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In this paper, an experimental study of laminar magnetohydrodynamic (MHD)
buoyancy-driven flow in a cylindrical cell with axis horizontal is described. A steady
uniform magnetic field is applied vertically to the mercury-filled cell, which is also
subjected to a horizontal temperature gradient. The main features of this internal
MHD thermogravitational flow are made experimentally evident from temperature
and electric potential measurements. Whatever the level of convection, raising the
Hartmann number Ha to a value of the order of 10 is sufficient to stabilize an
initially turbulent flow. At much higher values of the Hartmann number (Ha ∼ 100)
the MHD effects cause a change of regime from boundary-layer driven to core
driven. In this latter regime an inviscid inertialess MHD core flow is bounded by a
Hartmann layer on the horizontal cylindrical wall and viscous layers on the endwalls.
Since the Hartmann layer is found to stay electrically inactive along the cell, the
relevant asymptotic (Ha� 1) laws for velocity and heat transfer are found from the
balance between the curl of buoyancy and Lorentz forces in the core, together with
the condition that the flow of electric current between core and Hartmann layer is
negligible. A modified Rayleigh number RaG/Ha2, which is a measure of the ratio
of thermal convection to diffusion when there is a balance between buoyancy and
Lorentz forces, is the determining parameter for the flow.

1. Introduction
A technologically important solidification process is the growth of semi-conductor

crystals from a melt. A dopant is usually introduced in the melt in order to give the
appropriate electronic properties to the semi-conductor crystals so formed. Because
density gradients occur, buoyancy-driven flows arise and it is well-known that they
are responsible for major defects like macrosegregations or striations (Langlois 1985).
In the case of the Bridgman crystal-growth technique, a closed crucible contains both
solid and liquid phases, separated from each other by a solidification interface. For a
vertical Bridgman furnace, where the melt stays in the upper part of the crucible, the
axial temperature gradient is opposed to gravity and the flow tends therefore to be
naturally stabilized. Nevertheless, any deformation of the solidification interface from
the horizontal, which is a priori unpredictable, generates horizontal density gradients

† Present address: Laboratoire des Ecoulements Géophysiques et Industriels, BP 53, 38041
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and induces a flow whose magnitude is strong enough to modify dramatically mass
transfer of dopant. For liquid semi-conductors or liquid metals, the molecular viscosity
is typically much larger than the chemical diffusivity (i.e. the Schmidt number is large),
so that convection is important in this context. On the other hand, the horizontal
Bridgman crystal-growth configuration, with an imposed axial temperature gradient
gives rise naturally to a primary convective loop – the so-called Hadley circulation.
This flow in the absence of electromagnetic effects has been modelled by Cormack,
Leal & Imberger (1974).

Macrosegregation and striations are related to an undesirable level of convection
and to hydrodynamical instabilities respectively. Their elimination – a goal in crystal
growth – could be promoted by solidification in micro-gravity. However, the use
of a steady magnetic field is more attainable, which is known to be an efficient
tool for damping the buoyancy-driven flow in a horizontal Bridgman crystal-growth
configuration (Utech & Flemings 1966). Normally the concentration of the dilute
chemical species (including both the injected dopant and the chemical impurities) is
small enough so that buoyancy is essentially due to temperature gradients alone. The
Schmidt number is so large that the concentration field behaves as a passive scalar.

Since motion plays a key role, the study of how MHD effects influence the
Hadley circulation in the horizontal Bridgman configuration is the aim of the present
paper, which complements former purely theoretical papers (Garandet, Alboussière
& Moreau 1992; Alboussière, Garandet & Moreau 1993, 1996) from the same group.
Of these papers, the one by Alboussière et al. (1993) is particularly relevant and is
the Part 1 to the present Part 2.

1.1. Internal thermogravitational flows in the absence of MHD effects

Ordinary internal thermogravitational flows (Bejan 1984) subjected to a horizontal
temperature gradient always involve a primary vortical loop, the Hadley circulation,
characterized mainly by a horizontal vorticity component Ω = −Ωŷ, where the
horizontal unit vector ŷ has the direction of the product G × g, G and g designating
respectively the core horizontal temperature gradient and gravitational acceleration.
If buoyancy forces, upwards near the hot endwall and downwards near the cold
endwall, are balanced by vertical pressure gradients, varying axial pressure gradients
arise, which drive the Hadley circulation.

For internal thermogravitational flows of fluids with moderate to high Prandtl
number (Pr), Bejan (1984) distinguished between three thermal regimes, conduction
dominated, core driven and boundary-layer driven. Bejan’s classification was defined
in the context of two-dimensional enclosures, whereas we shall be concerned with
cylindrical geometry, but the physical principles are similar and worth reviewing here.
The regime that occurs depends on both the aspect ratio of the enclosure ε and
the Rayleigh number Ra (ε = h/l and Ra = gβh3∆T/(ναd)), where ν denotes the
molecular viscosity, αd thermal diffusivity, β the volumetric expansion coefficient, ∆T
the temperature difference between the temperature T2 of the hot endwall and the
temperature T1 of the cold endwall, h the height (vertical walls) and l the length
(horizontal walls) of the enclosure (see figure 1).

Another difference from the conditions of Bejan’s classification is that the present
paper is concerned with low-Prandtl-number fluids (liquid metals). The former distinc-
tion between three thermal regimes still holds provided that the Boussinesq number,
defined as the product of Pr and Ra, is treated as the new distinguishing parameter.
When Pr Ra � 1, conduction dominates and the temperature distribution is given
by a uniform gradient throughout the enclosure. The resulting buoyancy forces drive
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Figure 1. Three typical thermal regimes for aspect ratio ε� 1: (a) conduction dominated,
Pr Ra� 1; (b) core-driven, ε(Pr Ra)1/4 � 1; (c) boundary-layer driven, ε(Pr Ra)1/4 � 1.

a small circulation, which takes the form of a fully developed flow, with horizontal
velocity components only, over most of the length of the enclosure.

As the value of Pr Ra is raised convection becomes important and the temperature
distribution departs from that of a uniform gradient. If ε(Pr Ra)1/4 < 1, flow in the
central region between the hot and cold ends may still be fully developed. However,
there is now a convection component to the overall heat flux in that region, as well as
the conduction associated with the temperature gradient. To match the overall flux to
conduction at an endwall boundary, the temperature gradient must become steeper
at the boundary. This steepening occurs in a boundary-layer thickness δt of order
h(Pr Ra)−1/4 and there are consequent ‘temperature steps’ at the endwalls (denoted
on figure 1c by ∆S1 and ∆S2). If the longitudinal temperature gradient (denoted by
G) is nearly the same as (T2 − T1)/l (denoted by G0), the end effects have a small
influence on the overall behaviour and the situation is said to be core driven.

If ε(Pr Ra)1/4 > 1, end effects become dominant and the temperature distribution
between the endwall boundary layers may approach a horizontally stratified condition.
Flow is dictated by endwall conditions, there being insufficient length for vertical
diffusion to produce a fully developed flow in the enclosure.

On figure 1, the typical thermal regimes – conduction dominated, core driven and
boundary-layer driven – are sketched in the particular case of a small-aspect-ratio
enclosure (ε� 1).

Finally, it should be noted that the Grashof number Gr defined as gβh3∆T/ν2, is
relevant to the analysis of boundary-layer-driven regimes when inertia can no longer
be neglected. Inertial end effects such as additional stationary loops are consistently
observed for low-Prandtl-number fluids (Hart 1983) as Gr is increased.

1.2. Damping of motion by means of a uniform magnetic field

In this paper, we treat thermogravitational MHD flows for which convection of
the magnetic field may be considered negligible (low magnetic Reynolds number).
The Lorentz force which is due to the application of a steady uniform magnetic
field B0 is responsible for a damping effect whose importance relative to viscous
friction is given by the square of the magnitude of the Hartmann number Ha , defined
as Ha =

√
σ/ρν B0h. The symbol σ denotes the electric conductivity of the fluid.

When the magnitude of the applied magnetic field B0 is sufficiently strong, a MHD
reorganization of the flow is to be expected. Hartman layers (thickness Ha−1) develop
along walls which are not aligned with B0, and shear side layers (thickness Ha−1/2)
along walls parallel to B0. Viscous effects are confined to these layers, whereas the
remainder of the flow – the MHD core flow – may be treated as inviscid.† As is the

† For simplicity in this introductory discussion, inertia effects are assumed negligible, but will be
considered again in later sections.
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case for pressure-driven flows (Hunt & Shercliff 1974), much care must be taken
when calculating the velocity scale of such MHD internal thermogravitational flows.
In particular, when the walls are electrically insulating, it is essential to adopt a
three-dimensional point of view since the nature of the electric current path (resulting
from the interaction between the velocity field and B0) may dramatically modify the
flow. If the current is forced to return via the Hartmann layers, the local core velocity
is determined by the magnitude of the return current and the layer is said to be
active. If electric current paths close themselves naturally within the MHD core flow,
Hartmann layers are electrically inactive and the velocity scale is Ha−1 times that
of the active condition. This active-layer case may occur when the cross-sectional
shape of the horizontal enclosure is vertically asymmetric (Alboussière et al. 1993)
or when the applied magnetic field B0 is non-uniform and asymmetric about the
horizontal central plane (Neubrand et al. 1995; Alboussière et al. 1996). The direction
of the uniform applied magnetic field B0 is also of the greatest importance. If B0 is
aligned with Ω, the velocity may scale as Ha−1 (Ozoe & Okada 1989; Ben Hadid
& Henry 1997). In this last case, a two-dimensional flow is promoted within planes
orthogonal to the direction of B0 (Sommeria & Moreau 1982). Recently, a paper by
Juel et al. (1998) has shown this tendency to bi-dimensionality well by the results of
both numerical analysis and experiments.

The present paper focuses on the laminar MHD thermogravitational flow found
in the apparatus with the acronym MASCOT, standing for MAgnetic Stabilization
of COnvection and Turbulence. First, some guiding theoretical principles which
directly support the experimental investigation of the flow are presented. It is found
that the three flow regimes which occur in the absence of a magnetic field have
their counterparts at high Hartmann number. Second, we describe the experimental
convection cell and its instrumentation, which includes some novel sensors. Finally,
experimental results taken from both local and global diagnostics of the flow are
presented.

2. Theoretical background
The configuration to be studied is a horizontal circular cylinder whose aspect

ratio ε (ratio of the radius r0 to the length l) is small enough for a fully developed
regime to be possible within the central core. The longitudinal cylindrical wall is
supposed thermally insulating. Because of the centro-symmetric character of the
laminar thermogravitational flow, the enclosure’s geometry exhibits two planes of
symmetry or skew-symmetry, namely the longitudinal vertical mid-plane XZ (Y = 0)
and the transverse vertical mid-plane Y Z (X = 0) as sketched on figure 2. The origin
of the (X,Y, Z)-coordinate system is thus set at the centre point of the cylinder
and these coordinates are also dimensionless, based on a scale length equal to the
cylinder radius r0 (the dimensional system (x, y, z) used later in the specification of
the location of experimental measurements has its origin at the cold endwall). The
imposed magnetic field B0 is uniform and applied vertically. All walls are assumed to
be perfect electrical insulators. The configuration is one in which the flow is efficiently
damped since Hartmann layers stay electrically inactive and the Hadley vorticity Ω
is perpendicular to B0.

For the governing equations we adopt the Boussinesq approximation and non-
dimensionalize variables on the basis that, with Hartmann layers inactive, current
density is of order σuB0, where u is the horizontal velocity. A velocity scale u0 is then
provided by the assumption that there is a balance between buoyancy and Lorentz
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Figure 2. The configuration of MASCOT.

forces: u0 = ρgβ ∆T/σB2
0 , where ∆T is a characteristic temperature difference. As in

§ 1.1, ∆T might be taken as the overall temperature difference T2 − T1, but for much
of the discussion a more appropriate value for ∆T is the longitudinal temperature
difference within the core over a length equal to the cylinder radius r0, i.e. ∆T = G r0
where G is the axial temperature gradient in the core. The value of G may reach its
asymptotic level G0 = (T2 −T1)/l when a pure conduction regime is achieved. Taking
other scales as σu0B

2
0r0 for pressure, σu0B0 for current density and u0B0r0 for electric

potential we obtain the following dimensionless set of equations, expressing continuity
(1), the Navier–Stokes equations in the Boussinesq approximation (2), electric current
conservation (3), Ohm’s law (4) and the energy equation (5):

∇ ·U = 0, (1)

Gr

Ha4
(U · ∇U ) = −∇P +Θẑ + J × ẑ +

1

Ha4
∆U , (2)

∇ · J = 0, (3)

J = −∇Φ+U × ẑ, (4)

Pr Gr

Ha2
(U · ∇Θ) = ∆Θ. (5)

The symbols U , P , J , Θ, Φ, ∆ and ẑ denote, respectively, the non-dimensional
velocity, pressure, electric current density, temperature, electric potential, Laplacian
operator and vertical unit vector.

Three non-dimensional groups appear in the set of equations: the Grashof number
Gr, the Hartmann number Ha and the Prandtl number Pr in the following forms:

Gr =
βg ∆T r3

0

ν2
, Ha =

√
σ

ρν
B0 r0, P r =

ν

αd
, (6)

where the vertical length scale h initially introduced in § 1.1 has been replaced here
by r0. The combination of these groups seen in equation (5) will be found to have
particular significance and will be referred to here as the modified Rayleigh number,

Ra

Ha2
=
Pr Gr

Ha2
, (7)
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since it represents the ratio of convection to diffusion of temperature if the velocity
is set by a balance between the curl of buoyancy and Lorentz forces, rather than
buoyancy and viscous forces.

2.1. Conduction-dominated regime

With conduction dominant, the convection term of equation (5) must, by definition,
be negligible, i.e. Ra/Ha2 → 0. Here, it is worth recalling that the temperature
distribution takes the form of a uniform horizontal gradient G0; the appropriate
scale for the characteristic temperature ∆T is the temperature difference across a
non-dimensional horizontal distance of unity, i.e. ∆T = G0 r0 = (T2 − T1)r0/l and
∂Θ/∂X = 1. For this regime of pure conduction, Garandet et al. (1992) studied the
two-dimensional analogue of the MASCOT geometry and found that for Ha � 1 the
flow field consists of an inviscid, inertialess core, bounded by Hartmann layers on the
horizontal walls and viscous layers of thickness Ha−1/2 on the vertical endwalls. (It is
easily shown that inertia may be neglected in the endwall layers provided Ha2.5 � Gr.)

Taking the curl of equation (2) to eliminate the pressure term and of equation (4)
to eliminate the electric potential yields the set of equations for the core:

(ẑ · ∇)J = ẑ × ∇Θ, (8)

(ẑ · ∇)U = ∇× J . (9)

The solution for the two-dimensional analogue is therefore JY = Z , UX = −Z . The
flow is one of uniform shear along the length of the core and it may be regarded as
being in a fully developed condition, as found by Garandet et al. (1992).

The first analytical study of enclosures of finite extent in the Y -direction, which
therefore has to treat explicitly the return path of the electric current, was given in
Part 1 (Alboussiere et al. 1993). Fully developed flows in cylinders of arbitrary cross-
section were asymptotically modelled (Ha � 1), assuming a conduction-dominated
regime. By the expression fully developed flow, we mean that the flow exhibits no
variation in the axial direction (∂U/∂X ≡ 0). For a circular cross-section limited by
an electrically insulating wall, as in the configuration of interest here, the solution of
equations (8) and (9) with uniform temperature gradient, ∂Θ/∂X = 1, is

JY = Z, JZ = −Y, UX = −2Z. (10)

The solution has been chosen to satisfy the condition that the Hartmann layers
are inactive and therefore that electric current is returned within the core. In fact,
the electric current lines are circles centred on the cylinder axis. However, an electric
potential field appears in order to overcome electrical resistance to current flow in
the vertical direction and Ohm’s law (4) yields

Φ = Y Z. (11)

It follows that u× B has to balance a potential gradient in the Y -direction as well
as electrical resistance and, as given in equation (10), the flow field is one of uniform
shear again, but twice as strong as that of the two-dimensional analogue.

The present authors do not know of any attempt at an analytical conduction-
dominated solution for endwall viscous layers in the cylindrical case. Ben Hadid
& Henry (1996) provided a computational solution for the cylinder as a whole
(aspect ratio r0/l = 0.25), but their plots of velocity and current density vectors
have insufficient resolution to provide unequivocal insight into endwall flow. Some
further analysis of the flow was provided by the numerical work of Davoust et al.
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(1997) but it is not wholly conclusive since, here again, separate contributions of
convection and conduction of temperature to the subsequent flow were not isolated.
However, it is surmised here that, although there are important differences between
the cylindrical case and its two-dimensional analogue (such as the appearance of
velocity components in the Y -direction), the viscous layer of the latter will have its
counterpart in the former. The fully developed flow will fill the length of the cell
except in end layers of thickness O(Ha−1/2), where the flow is returned.

2.2. Fully developed flow

When convection of temperature can no longer be neglected, it is expected that
isotherms will tend to be swept towards the cold end of the cell in the upper half
of the cylinder and towards the hot end in the lower half. Vertical temperature
gradients are thereby introduced, but the temperature distribution will be subject to
the condition that the cylinder wall is adiabatic, i.e. ∂Θ/∂R = 0 there.

If a fully developed condition is closely approached over some length near the
central region of the cell, we may take the axial temperature gradient there, G, as
constant. As suggested previously, it is convenient to take the dimensional temperature
scale ∆T as this axial temperature gradient times the length scale. Thus, to distinguish
the Grashof and modified Rayleigh numbers based on ∆T = G r0, they will be denoted
by GrG and RaG/Ha2.

Inspection of equations (8) and (9) for the current density and velocity in the
core, together with equation (5) for temperature shows that the axial velocity and
the Y - and Z-components of current density are decoupled from the influence of the
temperature variation with Y and Z and any transverse, secondary, flow which may
be induced by it. Equations (10) still give the primary current and flow solution, so
that we may write

U = −2Z x̂+U s(Y,Z), Θ = X +Θs(Y,Z), (12)

where the secondary-flow velocity U s has no X-component. The temperature equation
then takes the form

∂Θ2
s

∂Y 2
+
∂Θ2

s

∂Z2
=
RaG

Ha2

{
−2Z +Usy

∂Θs

∂Y
+Usz

∂Θs

∂Z

}
. (13)

The fully developed condition implies that the longitudinal gradient of electric
potential, ∂Φ/∂X, must be constant. Integration of the longitudinal component of
Ohm’s law (4) over the cross-section of the cylinder then shows that the constant is
zero since there is no net longitudinal current. Introducing a stream function Ψs for
the secondary flow, such that Usy = ∂Ψs/∂Z , equations (4) and (8) yield

∂2Ψs

∂Z2
= −∂Θs

∂Y
. (14)

A simple approach to the solution of equations (13) and (14) is to develop it using a
power series in the modified Rayleigh number RaG/Ha2 (Cowley 1995):

Θs =
RaG

Ha2
Θ1 +

(
RaG

Ha2

)2

Θ2 + · · · ,

Ψs =
RaG

Ha2
Ψ1 +

(
RaG

Ha2

)2

Ψ2 + · · · .
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Figure 3. (a) Isotherms of the first-order temperature field Θ1 and (b) streamlines of
the resulting secondary transverse flow Ψ1.

Equating terms of order RaG/Ha2 yields after some algebra

Θ1 = 1
4
Z(3− Y 2 − Z2) = 1

4
R(3− R2) sin α, (15)

Ψ1 = 1
12
Y Z(Y 2 + Z2 − 1) = 1

24
R2(R2 − 1) sin 2α, (16)

where (R, α) are cylindrical polar coordinates with α measured from the horizontal
direction (see figure 2). According to equation (16) the secondary flow takes the
quadripolar form of four vortices, each of them being located in a quadrant of the
cross-section, as illustrated on figure 3(b). Figure 3 also shows how the adiabatic-wall
condition forces a horizontal temperature gradient, which in turn drives the flow.

Measurement of temperature provides an important diagnostic tool in the investi-
gation of physical behaviour in the cell. It is therefore of interest to obtain a feel for
the value of RaG/Ha2 below which the first-order solution of equation (15) provides a
satisfactory approximation to Θs. Since the zero-order primary flow and temperature
gradient are longitudinal, the second-order terms in the series expansion are zero. At
third order, we obtain

1

R

∂

∂R

(
R
∂Θ3

∂R

)
+

1

R2

∂2Θ3

∂α2
=

1

R

∂Ψ1

∂R

∂Θ1

∂R
− 1

R

∂Ψ1

∂R

∂Θ1

∂α
,

and it is clear from the expressions for Θ1 and Ψ1 in equations (15) and (16) that the
solution includes terms in sin α and sin 3α for the α-dependence. After some algebra
it is found that the full solution for the temperature at the wall Θs up to third order
in RaG/Ha2 can be written

Θs(R = 1, α) =
RaG

Ha2

{
1

2
sin α

}
+

(
RaG

Ha2

)3{
7

5850
sin α+

1

640
sin α cos 2α

}
. (17)

The lines of constant Θ3 for the solution are given in figure 4.
It seems from equation (17) that the solution to first order should provide a

satisfactory approximation up to quite moderate values of RaG/Ha2. The robustness
of the first-order result is further confirmed by the theory given in the Appendix
for a fully developed flow when Ha � RaG/Ha2 � 1. Under these conditions, the
temperature variation in the Y -direction is confined to thermal layers of thickness
order (RaG/Ha2)−1, as illustrated in figure 5. The central region forms a core in which
the vertical gradient of Θs is of order RaG/Ha2, while ∂Θ/∂X is still taken to be
unity, i.e. the core is near to being a thermally stratified region.
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The theory of the Appendix gives for the core (equations (A 10) and (A 11))

Θs → 2

9

RaG

Ha2
Z(3− Z2) for

RaG

Ha2
� 1,

in which the main qualitative difference from the first term in the expression for
small RaG/Ha2 given above is the independence of the result from Y (signature of
stratification). The wall temperature Θs(R = 1, α) is then found to be

Θs(R = 1, α)→ 1

9

RaG

Ha2
sin α{5 + cos 2α} for

RaG

Ha2
� 1, (18)

which gives the same numerical value for Θs as the first-order term in equation (17)
when α = ± 60◦ (as well as both expressions naturally giving Θs = 0 at α = 0◦).

The net heat flux, which is conserved along the cylinder, is augmented by convection.
Taking the scale for heat flux to be λ∆T πr0, where λ is the thermal conductivity, the
non-dimensional heat flux or Nusselt number is

NuG =
1

π

∫ 2π

0

∫ 1

0

(
∂Θ

∂X
− RaG

Ha2
UXΘs

)
R dR dα, (19)

in which we may take generally for the fully developed flow that UX = −2Z and
∂Θ/∂X = 1. The scale temperature ∆T is still being taken as G r0. When Θs is
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Figure 6. Isotherms of the first-order temperature field Θ1 in the cold end region.

approximated by the first-order term in RaG/Ha2, with Θ1 from equation (15), we
obtain for the heat flux

NuG →
(

1 +
7

24

(
RaG

Ha2

)2
)

when
RaG

Ha2
→ 0. (20)

Alternatively, when we take the asymptotic (RaG/Ha2 � 1) expression for Θs, we
obtain a remarkably similar result:

NuG →
(

1 +
5

18

(
RaG

Ha2

)2
)

when
RaG

Ha2
� 1. (21)

At the surface of an endwall, heat flow is by conduction only. The Nusselt number
NuG is therefore the average value of ∂Θ/∂X there and the temperature distribution
along the horizontal plane of symmetry may be expected to have the shape sketched
in figure 1 for a core-driven regime in the absence of a magnetic field. An effective
temperature step is formed near each endwall of the cell, but its value is dependent
on the length scale over which the increased temperature gradient occurs.

2.3. End conditions

The question arises as to whether the cell is long enough for fully developed flow
to be established. It was surmised in § 2.1 for the conduction-dominated regime
(RaG/Ha2 → 0) that end layers of thickness order Ha−1/2 would form on the endwalls,
similar to the two-dimensional layers of Garandet et al. (1992). The streamlines of
the fully developed shear flow (equation (11)) would then be closed within such layers
and the condition for the existence of fully developed flow is that the cylindrical cell
is long in comparison to the end-layer thickness, ε� Ha−1/2.

When the modified Rayleigh number is small, but no longer negligible, there is
vertical variation in the fully developed temperature field, which is given by equation
(15) to first order in RaG/Ha2. Adjustment to the constant-temperature boundary
condition on the endwall is necessary and it is easily shown (Cowley 1995) that, to this
order in RaG/Ha2, the adjustment occurs over a length of the order of the cylinder
radius. The isotherms for the perturbation temperature field are illustrated in figure
6. The end conditions force an additional perturbation to the temperature gradients
in the longitudinal direction, ∂Θ1/∂X, which in turn give rise to a buoyancy-force
field with the circulations shown in figure 6. Making the assumption of a very thin
endwall Ha−1/2 layer, capable of returning both the first-order flow induced by the
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buoyancy-force field and the associated longitudinal current, Cowley (1995) found
that the flow would be axisymetric with a central jet away from the endwall. It is
clear that for small, but not zero, RaG/Ha2 the condition for fully developed flow to
be established becomes ε� 1.

With RaG/Ha2 larger and convection becoming more significant, the heat-flux
equations (20) and (21) imply strong temperature gradients at the endwalls and the
possibility arises that electromagnetic forces will no long be sufficient to balance the
rotational part of the buoyancy forces there. A conventional layer with a balance
between buoyancy and inertia has a thickness O(RaPr)−1/4 and it is noteworthy
that this becomes comparable with the thickness of the MHD parallel layer when
(RaPr)−1/4 is of order Ha−1/2, which may be equivalently written Ra/Ha2 ∼ Pr−1.
A complete theory for the influence of the endwall region is not available for high
levels of Ra/Ha2, but it is clear that it could be controlling one.

3. MASCOT experimental set-up
This section describes the design of the MASCOT experimental set-up and the

specific procedures especially adopted to achieve reliable measurements of temperature
and electric potential. As will be found in § 4, a demanding level of accuracy is required
if results are to be meaningful.

3.1. Global description

The basic element of the MASCOT experiment is a mercury-filled cylindrical cell
(radius r0 = 20 mm, length l = 400 mm), made of glass and equipped with sensors to
measure both temperature and electric potential at the cylindrical wall.

Two thick copper disks are located at the ends of the cell whose temperatures
T1 (cold end) and T2 (hot end) are controlled with a precision of ± 0.01 K. Such an
accuracy in uniformity is achieved by careful control of water circuits providing flow to
passages within the copper disks. These passages, which have the appearance of spiral
labyrinths are designed so that water first flows inwards and then outwards. Moreover,
three commercial temperature regulators, distributed along the water circuit stabilize
temperatures to better than 10−3 K variation in time.

In order to minimize any unwelcome radial thermal flux, a thick coating of
thermally insulating material surrounds the cell and the coating is in turn surrounded
by a thick copper tube, which is in thermal contact with the two end disks.

The temperature distribution in the copper tube will correspond to an approx-
imately uniform temperature gradient G0 between the two endwalls. Since for the
conduction-dominated regime, this is the same longitudinal gradient as in the mercury,
radial heat flux for that regime is minimized. When convection becomes significant
and there are ‘temperature steps’ at the endwalls in the mercury (∆S1 and ∆S2), there
is no longer a radial match in temperature between the mercury and the copper
tube along the whole length, but equality remains at the endwalls and at the central
transverse plane of the cell. The axial thermal flux in the tube remains uniform to
within 1% along its length, as has been demonstrated by numerical simulation.

The cell is placed horizontally between the two poles of a magnet which provides
a DC vertical magnetic field B0 (of intensity up to 0.613 T). Spatial uniformity of
B0 has been assessed, measuring the vertical component Bz . Some departures from
uniformity may be detected near the ends of the experimental set-up but they are
never more than ± 0.9%. Taking account of the stability in time of the generator
which supplies the electromagnet with DC current, we consider B0 to be imposed
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(b)

(a)

Figure 7. (a) The cell with the upper half of the thermally insulating coating and
outer copper tube raised. (b) The cell with insulation removed.

with an absolute precision of ± 0.4× 10−3 T over one week. An extremely fine (a few
µm) teflon coating on the end disks provides electrical insulation from the mercury
with minimal hindrance to heat flow. Its green colour is visible in the photograph of
figure 7(b).

Temperature conditions and level of magnetic field are fully controlled by a com-
puter, which is also used for data acquisition. Figure 7(a) shows the cell with the
thermally insulating coating and half of the outer copper tube raised, while figure
7(b) shows the cell without any insulation.

3.2. The temperature and electric potential sensors

Fifty-five dual-purpose sensors, capable of performing both temperature and electric
potential measurements, were located at the cylindrical wall. They may be seen on the
photograph of the cell given in figure 7(b) with copper tube and thermal insulation
removed. The wall sensors are distributed on eleven half-circles, of which six are
concentrated near the cold end at x = 2, 5, 8, 12, 20 and 30 mm from that end
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(left-hand side of the photograph). Three other half-circles are distributed along the
central region (x = 100, 200, 300 mm) in order to investigate the core of the flow.
The last two half-circles are located in the vicinity of the hot endwall (x = 395,
398 mm) in order to check whether there is centro-symmetry in the temperature and
electric-potential fields. By centro-symmetry we mean in the case of temperature,
T (X,Y ) − T0 = T0 − T (−X,−Y ), where T0 denotes the temperature at the centre
of the cell (see also equations (26) in § 5). Each half-circle has five sensors located at
angles α = 0◦, ± 45◦, ± 90◦, measured from the horizontal mid-plane XY (see figure
2). In addition, the cell may be rotated (see the locking screw for angular position
of the cell on the right hand-side of the photograph) so that measurements may be
taken at other angular positions.

The sensors act as platinum–constantan thermocouples, although electrical con-
tact between the wires is via the mercury (figure 8). All cold welded joints of the
thermocouple part of these sensors are gathered inside a box whose temperature T0

is controlled with an accuracy of ± 0.01 K. The wires are carefully and closely set,
so that after a smooth polishing of the inner glass wall, their heads just skim the
mercury surface. To achieve a good electric contact with the mercury, a very thin
layer of silver is electrochemically deposited onto the heads of the wires. The filling
of the cell with mercury takes place under a pressure-driven flow of argon in order
to avoid as much as possible any chemical impurities. As soon as contact between a
sensor and mercury occurs, the formation of a mercury–silver amalgam ensures good
electrical contact. The platinum wires are used also for the measurement of potential
difference between pairs of sensors.

In addition to the wall sensors, five more are mounted on a movable carriage
whose axial and angular position can be varied when introduced into the cell of the
experiments. The five sensors are arranged along a radius arm, one being on the
centreline of the cell (see figure 9) and the rod controlling the probe position is passed
through the hot endwall of the cell. The presence of a movable probe within the flow
introduces electrical and mechanical disturbances. However, the principal use of the
probe has been to check the expected centro-symmetry both for the temperature and



72 L. Davoust, M. D. Cowley, R. Moreau and R. Bolcato

Z

Y

α′ α

Circular wall
of the cell

Mercury

Axial
motionHot end

X
Angular
motion

S4

S2

S1
S5

S3

Figure 9. A sketch of the movable probe.

electric-potential fields. And measurements have been taken at Hartmann numbers
typically in the region of 100. At this level of Ha , the characteristic velocity scale
is of the order of 1 mm s−1 and the Reynolds number, based on the typical cross-
sectional length scale of an element of the probe (2 mm), is less than 10. Of particular
concern are the perturbation of the electric-current paths and the formation of ‘wakes’
aligned with the magnetic field. However, it is to be noted that the first-order current
distribution (equation (10)) takes the form of circular current paths and the axial rod
of the probe will have minimal influence on this current flow. The scale for the length
of the ‘wakes’ is of order Ha1/2 times probe thickness (i.e. 20 mm). The ‘wake effect’
could be more serious than the interference with current paths but the positioning of
the movable carriage (α = 45◦, 135◦) was such that major interference between any
wakes and the sensors themselves was minimized.

As usual in the experimental investigation of MHD flows (Hunt & Shercliff 1974;
Nguyen Duc & Sommeria 1988), measurement of the electric-potential difference
between two points m and n is a worthwhile indicator of behaviour. Here, the
problem is that the electric potential differences due to the MHD bulk flow are
so weak (10−7–10−6 V) that a non-negligible thermoelectric part contributes to the
subsequent electric signal S∆φ(m, n) between m and n. The expression for S∆φ(m, n)
follows from Ohm’s law with thermoelectric term included (Shercliff 1979),

j/σ = −∇φ+ u× B0 − Pmat∇T ,
where Pmat denotes the absolute thermoelectric power of the various media involved
in each of the elementary segments of the electrical circuit [m–n], [n–p], [p–q], [q–r],
[r–s] and [s–m] (see figure 8), each of them contributing to S∆φ(m, n). If [φn−φm]MHD

represents the electric-potential difference due to the MHD bulk flow, integration of
Ohm’s law along the path n-p-q-r-s-m provides an expression for the electric signal to
be amplified and measured:

S∆φ(m, n) = PPt/Hg (Tm − Tn) + (φm − φn)MHD .

The symbol PPt/Hg is the thermoelectric power of platinum with respect to mercury.
The analogue amplifier delivers a signal,

S(m, n) = A(m, n) S∆φ(m, n) + Offset(m, n), (22a)
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where A(m, n) and Offset(m, n) designate, respectively, the electronic gain (1950 with a
precision of ± 5%) and an offset, which is slightly dependent on time.

Similar algebra leads easily to an equivalent expression for the temperature signal
Sn, also at output from an analogue amplifier,

Sn = An[PPt/Constantan(Tn − T0)] + Offset(n), (22b)

where the symbols An, PPt/constantan and Offset(n) denote the gain (500 with a precision
of ± 5%), the thermoelectric power of platinum with respect to constantan, which
is well-known and effectively constant over the range of temperature involved, and
the offset of the amplifier. To take account of the observed drift with time of either
Offset(n) or Offset(m, n), measurements of S(m, n), Sn, Offset(m, n) and Offset(n), were
taken in succession systematically and the actual values of Offset(m, n) and Offset(n)
were subtracted from signals S(m, n), Sn.

Since the thermoelectric contribution to the electric signal S(m, n), PPt/Hg (Tm−Tn), is
of the same order as the MHD contribution [φm−φn]MHD , accurate knowledge of the
thermoelectric power PPt/Hg is essential for measurement between sensors at different
temperatures. However, the experimental data on PPt/Hg are not extensive (Marwaha
& Cusack 1965), although they indicate both a strong variation with respect to
temperature (in comparison with other liquid metals, such as gallium or tin) and a
dramatic sensitivity to any traces of chemical impurities. In practice, we encountered
significant problems when measuring the MHD contribution [φm − φn]MHD with a
reproducibility which we could regard as satisfactory and, therefore, a restricted set
of measurements was taken for the potential difference between points where the
temperature is the same, thus eliminating the unwelcome thermoelectric contribution.
The expected symmetry about the vertical, longitudinal, mid-plane (X,Z ) implies that
this temperature condition will hold between points at angles α and 180◦ − α to the
horizontal within each cross-section and at the same radial position. This assumption
was checked by direct measurement of the temperature. Then the wall sensors were
used to determine mainly the potential differences for α = 45◦ (in the upper half of
the cell and along its length) in accordance with the simplified relation

[φm(45◦)− φn(135◦)]MHD =
S(m, n)−Offset(m, n)

A(m, n)
.

In addition to the centro-symmetry in temperature, referred to above, a similar
centro-symmetry in the electric potential field is to be expected. This was checked
by measurements taken with the wall sensors and also using the movable probe. In
the case of the latter, it is not possible to measure directly the difference [φm(α) −
φn(180◦−α)]MHD since the sensors are mounted on a single radius arm. The procedure
adopted was to take a measurement at angle α for the potential difference between the
sensor at the point of interest (position m) and the sensor which is mounted on the
axis of the probe (S5 – figure 9), which we can denote as S(m, 5). The probe was then
rotated to angle α′ = (180◦ −α) and a measurement of the potential difference S(m′, 5)
taken at the new position (position m′). Provided that the time interval between these
two measurements is sufficiently short, the drift in the offset of the single amplifier
used is negligible, Offset(m, 5) is same as Offset(m′, 5), and the difference between the
measurements yields

[φm(α)− φm′f(180◦ − α)]MHD =
S(m, 5)− S(m′, 5)

A(m, 5)
.
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Figure 10. (a) The differential measurement of ∆wT . (b) Heat transfers across the cell.

3.3. Heat transfer measurement

As a global diagnostic of the flow, it is worth evaluating the transfer of heat from the
hot endwall to the opposite cold endwall. In the present work, the Nusselt number,
as defined for equations (20) and (21), can be experimentally measured as follows.
Since a flow of water is used to control the temperatures T1 and T2 of the endwalls,
the level of heat transfer is related to the temperature change ∆wT of the water. This
change (a temperature rise at the cold endwall, a temperature decrease at the hot
endwall, normally of order 0.01 K) was increased to order 0.1 K by reducing the flow
rate of water and could be recorded with a differential thermocouple (figure 10a).

The total heat flux Qtot across the cell (via the mercury and the copper tube – see
figures 10a and 10b) is easily calculated from ∆wT and measurement of the water
rate of flow ṁwater , as the quantity c ṁwater ∆wT , where c is the heat capacity. The same
water circuit was used for the cold end and for the hot end so that ṁwater is the same
for each. Assuming radial heat flux to remain weak, and this assumption is validated
by the fact that temperature rise and temperature decrease ∆wT are found to be the
same, the total heat flux Qtot is equal to the sum of the purely diffusive heat flux QCu
going through the cylindrical copper wall and the heat flux QHg through the mercury,
both of which may be taken as constant along the length of the cell.

Suppose now that Q0
Hg and Q0

tot refer to values taken by the heat fluxes when the
imposed magnetic field B0 is at its maximum value (0.6135 T). At this condition,
the regime can be assumed to be conduction dominated so that Q0

Hg is equal to

πr2
0λ(T2 − T1)/l. Defining the Nusselt number as the ratio of the actual flux in the

cell to the heat flux which would occur by pure conduction for the same overall
temperature difference, and assuming that QCu is independent of the level of the
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Density ρ (kg m−3) 13579
Coefficient of thermal expansion β (K−1) 1.81× 10−4

Kinematic viscosity ν (m2 s−1) 1.04× 10−7

Thermal conductivity λ (W m−1 K−1) 8.69
Thermal diffusivity αd (m2 s−1) 46.06× 10−7

Specific heat capacity Cp (m2 s−2 K−1) 139.4
Electrical conductivity σ (kg m s−3 V−2) 1.04× 106

Table 1. Thermophysical properties of mercury at 293 K.

magnetic field, we obtain

Nu =
QHg

Q0
Hg

=
Qtot − Q0

tot

πr2
0λ(T2 − T1)/l

+ 1. (23a)

Note that the Nusselt number NuG, for which theoretical values were given in
equations (20) and (21), has heat flux referred to conduction at the temperature
gradient G of the fully developed condition, so that the prediction for Nu is given by

Nu =
G

(T2 − T1)/`
NuG. (23b)

3.4. Experimental uncertainties

Thermophysical data on the molecular viscosity, volumetric expansion coefficient,
electric conductivity, thermal conductivity, thermal diffusivity, and the heat capacity
of mercury, depend on temperature. The values are taken at 293 K (table 1) and this
implies at most relative errors of

δν

ν
≈ ± 2%,

δβ

β
≈ ± 0.01%,

δρ

ρ
≈ ± 0.09%,

δσ

σ
≈ ± 0.5%,

δλ

λ
≈ ± 1.3%,

δαd

αd
≈ ± 1.5%,

δCp

Cp
≈ ± 0.12%.

The electromagnet provides a very steady magnetic field B0, with a spatial unifor-
mity of ± 0.9%, and exhibits a weak hysteresis which is compensated for as much
as possible. The magnetic field B0 is assessed to be controlled with an accuracy of
δB0/B0 ≈ ± 1.2%. By way of illustrating the difficulty experienced in measuring elec-
tric potentials, we record that this had to be done at night: broad-band noise during
day time was found to be too great. Because sources of error in the amplification and
data acquisition stages are complex, it is not possible to give a precise estimate of
their magnitude, but it was found that the limits on reproducibility of the temperature
and electric potential measurements were: δ(T − T0)/(T − T0) ≈ δG/G ≈ ± 2% and
δφ/φ ≈ ± 5%. Where error bars are shown on the graphs reproduced in the next
sections, they are based on these figures. The relative errors in the non-dimensional
numbers are estimated as δHa/Ha ≈ ± 2.5%, and δRaG/RaG ≈ ± 4.1%.

In relation to the heat transfer measurements, equation (23a) yields

δNu

Nu − 1
=

∣∣∣∣δ(Qtot − Q0
tot)

Qtot − Q0
tot

∣∣∣∣+

∣∣∣∣δλλ
∣∣∣∣+

∣∣∣∣δ(T2 − T1)

T2 − T1

∣∣∣∣ .
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Since Qtot is derived from the measurement of the very small temperature difference
∆wT between inlet and outlet of the water flowing through each disk, the dominant
influence on δNu is

δNu ≈ ± (Nu − 1)

(∣∣∣∣δ(|∆wT |+ |∆0
wT |)

|∆wT − ∆0
wT |

∣∣∣∣) ,
neglecting the less significant errors in λ and c (water heat capacity) and any dif-
ference in ṁwater between the runs for Qtot and Q0

tot. Thus, for conditions such that
Nu = 1.5, ∆wT and ∆0

wT were measured as 0.1± 0.001 K and 0.09± 0.001 K whereas
δṁwater/ṁwater and δ(T2 − T1)/T2 − T1 were measured as ± 1% and ± 2.5%, giving
Nu = 1.5 ± 0.1.

4. General features of the flow, as observed
The features observed on the temperature distributions measured at the wall of

the cell are now described. Some data on temperature, which are exhibited on the
following plots, are time-averaged; this holds when Ha was lower than 10 and, as
time-dependent traces showed, the flow was found to be turbulent. The symbol Tα(x)
denotes the x-dependence of temperature along the generatrix located at the angular
position α, whereas Tx(α) designates the temperature distribution around a circle
located at a particular axial position. The dimensional coordinate x is measured in
millimetres from the cold endwall.

4.1. Temperature distributions along the cylindrical wall

On figure 11, experimental curves T45◦(x) are plotted for an overall temperature
difference T2 − T1 = 14.7 K, and various values of the Hartmann number. In each
case, there is clearly a core region where the axial temperature gradient is uniform
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(denoted G), but the value varies strongly with Hartmann number. The ratio G/G0,
where G0 = T2 − T1/l, is then seen to be a convenient indicator of the convection
level. As expected, the transition from a boundary-layer-driven regime to a core-
driven regime is consistent with Hartmann numbers becoming greater and also with
Rayleigh numbers (or Grashof numbers) becoming smaller (figure 12). The transition
between the thermal regimes is also illustrated on figure 11 by the decrease of the
effective temperature steps at the endwalls, also indicated on figure 1 by ∆S1 and ∆S2.
By temperature step, we mean the difference between the temperature which would
be found at an endwall if the linear core variation were to be extended up to the
wall (T ′1 on figure 11) and the actual temperature, i.e. ∆S1 = (T ′1 − T1). Note that
G = G0−(∆S1 +∆S2)/l. The ratio G/G0 itself acts as a criterion for the occurrence of a
transition since beyond some value in the region of 0.5, the core temperature gradient
G contributes primarily to the establishment of the overall temperature difference.
Whatever the Grashof number, as soon as Ha is significantly larger than 100, any
differene between G and G0 no longer holds, and the regime tends to conduction
domination.

As expected, it was found that there is centro-symmetry in the temperature distri-
bution. Thus T225◦(x) may be deduced from the results of figure 11 by T225◦(X,Y, Z) =
T1 + T2 − T45◦(−X,−Y,−Z) since 1

2
(T1 + T2) is the temperature at the centre point.

The presence of a temperature extremum, located at x ∼ 35 mm on the T45◦(x) plot,
is worthy of note. Although at first surprising, such a pattern can be explained by the
three-dimensional recirculating flow of the end region. Consider two fluid particles
travelling either side of the top generatrix and approaching the cold end. As shown by
Ben Hadid & Henry (1997) from their fully three-dimensional numerical study, each
of these fluid particles, rather than remaining in a vertical plane, moves outwards
while descending symmetrically with respect to the longitudinal mid-plane. Convection
associated with this motion leads to an increase in temperature at vertically lower
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experimental points. (b) Measured departure from a purely sinusoidal distribution of temperature
around the central circle. The lines depict best-fit curves proportional to cos 2α.

levels in the vicinity of the cold wall. The phenomenon is consistently observed on
the generatrix at α = 45◦ when convection is significant. A symmetric extremum is
also observed at x = 365 mm when the horizontal temperature gradient is reversed
by turning the cell round: the sensors were then concentrated near the hot end.
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4.2. Temperature distribution around the central circle

The measured temperature distribution around the central circle, T200(α), is shown on
figure 13(a). Whatever the Hartmann number, the distribution is remarkably well fitted
by a sine curve whose peak-to-peak amplitude represents the maximum temperature
variation over the cross-section. As expected from the MHD damping effect, the
temperature becomes nearly uniform over the cross-section when the Hartmann
number is high enough (Ha > 300), as expected for a conduction-dominated regime.
But surprisingly, the amplitude first increases with increasing Hartmann number and
only starts to decrease for Ha > 26.6. Observation of the time-dependence of measured
electric potentials and temperatures indicated that the flow was undoubtedly laminar,
or equivalently, that the effective viscosity was reduced to the molecular level, for
Ha > 10 at Ra = 22.6× 103 (Ra here is based on the overall temperature difference).
But two effects contribute to an initial increase in amplitude with increasing Hartmann
number. The first is that the appropriate temperature scale is G r0 and the core
temperature gradient increases markedly with Ha increasing (figure 12), and the
second is that the high-Hartmann-number theory is not appropriate here.

The analysis of § 2.2 predicted that to higher than first order in RaG/Ha2 the
temperature distribution around the central circle should exhibit a departure from
the purely sinusöıdal form by a term proportional to sin α cos (2α) (equations (17) and
(18)). Although the temperature differences are small for our experimental conditions,
we have enough confidence in their accuracy to reproduce results in figure 13(b) which
support the prediction well.

4.3. Core region: comparison with theory

The data on temperature of figure 13(a) have been compared with the predictions
of equations (17) and (18) in the following way. Using the method of least squares,
the best fit to the mean value of Θs/ sin α at R = 1 has been evaluated (coefficient
of the first harmonic of the temperature distribution around the central circle) and
to a cos 2α law for its variation (coefficient of the second harmonic). According to
equation (17), the mean value of Θs/ sin α should vary with sufficiently low values

of the modified Rayleigh number, as 0.5RaG/Ha2 + (7/5850)(RaG/Ha2)3, and with
sufficiently high values as ( 5

9
)RaG/Ha2 (equation (18)). On figure 14, the mean value

of Θs/ sin α is plotted against RaG/Ha2, the values of the temperature gradient G
being taken from experimental measurements (as in figure 12). It will be seen that
as RaG/Ha2 increases, the experimental points lie progressively further below the
theoretical predictions, but the right-hand side of the plot also represents low values
of Hartmann number for which the asymptotic theory developed in the Appendix
will not be valid.

Also shown on figure 14 are the experimental points for the amplitude of the
variation of Θs/ sin α, taken from the measurements of figure 13(b). This variation is,
as expected, much smaller than the mean value. Although the points do not follow
closely the scaling laws of equations (17) and (18) (i.e. that Θs/ sin α has a cos 2α

dependence proportional to, respectively, (RaG/Ha2)3 and (RaG/Ha2)), there is some
indication that the level of variation is in better accordance with equation (17) as
soon as RaG/Ha2 is lower than 2.

In § 2.2 it was explained that in a fully developed region the primary flow is
not affected by the secondary transverse flow and, as mentioned in connection with
equation (14), it is easily shown that there is no electric-potential field associated
with the latter. It follows that, provided the Hartmann number is high enough,
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equation (11) gives the potential distribution. In particular, the non-dimensional
potential difference between points on the wall at angular positions α = 45◦ and
α = 135◦ (Z = 1/

√
2, Y = ± 1/

√
2) is predicted to be precisely unity, i.e. the

measured voltage difference (φm(45◦) − φm(135◦))MHD will be u0B0r0, where u0 is the
scale velocity (recall that u0 = ρgβ∆T/(σB2

0) and ∆T = G r0). Note that the actual
velocity at this vertical position is not equal to u0 and some of the voltage difference
is associated with resistance to electric current flowing in the Y -direction.

On figure 15, values of the measured potential difference divided by B0r0 are
plotted against the Hartmann number and then compared with the scale velocity
adopted for the high-Hartmann-number theory. In calculating ∆T and consequently
u0, experimental values of G have been used. Note that the scale velocity is by
definition proportional to 1/B2

0 (or Ha−2) if G can be taken as independent of B0

(i.e. Hartmann number high enough for a conduction-dominated regime, G = G0).
The agreement for Ha > 40 is very good, in spite of the smallness of the velocities,
as indicated by the scale of the axis. Despite the difference between the values of the
aspect ratios, as far as the fully developed flow is concerned good agreement with
the numerical calculations by Ben Hadid & Henry (1996) is also achieved in regard
to the velocity scale. At lower values of Ha , the potential measurement still provides
some indication of velocity scales.

4.4. Global heat transfer

As described in § 3.3, measurement of the small temperature change in the temperature-
controlling water flows to the endwalls provided a means of deducing net heat flux
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Figure 15. Electric-potential difference between sensors located at α = 45◦ and α = 135◦ in units
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Figure 16. Heat transfer across the cell for an overall Rayleigh number of Ra = 22.6 × 103: �,
Nusselt number derived from measured rate of overall heat transfer (equation (23a)); •, Nusselt
number derived from temperature and electric potential measured at the central plane, together with
interpolated values of G (equation (25) with (23b)); - - -- - -, theoretical prediction using interpolated
values of G (equations (20) and (21) with (23b)).

through the mercury cell. Values of Nusselt number found in this way are plotted
on figure 16. For comparison, the prediction of the analysis for fully developed flow
(equation (20) for low values of RaG/Ha2 and equation (21) for high values) is repre-
sented by a single line since on the scale of the graph the difference between the two
equations is negligible. In making this comparison, values of the temperature gradient
G in the fully developed region have been interpolated from measured values, such
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as those presented on figure 12, so that Nu may be related to NuG in accordance with
equation (23b). It will be seen that there is good agreement between measurement and
prediction up to values of RaG/Ha2 in the region of 2, corresponding to a Hartmann
number of 80.

An interesting empirical result has been found to hold over the whole range of
modified Rayleigh number RaG/Ha2. To derive the result, it is assumed first that
the shape of the temperature distribution over the central cross-section is adequately
given by the theory for low values of RaG/Ha2 (equation (15)), but the magnitude of
the overall temperature difference is taken from measurement, i.e.

T (α) = T (0◦) + 1
4
[T (90◦)− T (270◦)]R(3− R2) sin α. (24a)

Second, it is assumed that the longitudinal velocity has the linear distribution with Z
of equation (10), while the scale velocity is given by the difference in electric-potential
behaviour at points α = 45◦ and α = 135◦, i.e.

u = −2Z[φ(45◦)− φ(135◦)]/(B0r0). (24b)

Integration for the net heat flux then yields

NuG = 1 +
7

24

[T (90◦)− T (270◦)][φ(45◦)− φ(135◦)]
αdGB0r0

. (25)

Values of Nusselt number deduced from this equation, equation (23b) and measure-
ment of temperature difference, potential difference and G, are included on figure 16
and remarkable agreement is achieved. This suggests that the velocity distribution
represented by equation (24b) has wider validity than might otherwise be expected.

The fact that heat transfer rates exceed those for pure conduction in accordance
with our chosen velocity scale is a good indication that the Hartmann layers along
the cell are passive. This scale is proportional to 1/B2

0 (or 1/Ha2 in the absence

of changes to length, etc.) which leads to the (RaG/Ha2)2 dependence found for
Nu − 1. If the Hartmann layer were active, this scaling law for heat transfer would
be expected to be closer to the form Nu − 1 ∼ RaG/Ha2. It is worthy of note that
the Nusselt number may act as a convenient experimental measure of whether there
is any electrical activity of the Hartmann layer.

5. Longitudinal variation
In this section, we present temperature and electric-potential measurements which

provide some information on how the flow and electromagnetic conditions vary along
the length of the cell. At the beginning of § 4, figure 11 showed how temperature
measured at α = 45◦ varied with distance x along the cylinder for various Hartmann
numbers. The apparent constancy of the temperature gradient G over a substantial
length was the basis for assuming fully developed conditions at the central cross-
section of the cylinder. It will now be seen that the assumption is not as soundly
based as might be wished, especially at low Hartmann numbers, although we believe
that the conditions were near enough to fully developed for comparison with the
theory of § 2.2 to be reasonable.

Two general features of the measurements are worthy of immediate note. The first
is that no departure was detected from symmetry about the longitudinal vertical XZ
mid-plane. The second is confirmation of centro-symmetry, i.e.

T (X,Z)− T0 = T0 − T (−X,−Z), φ(X,Z)− φ0 = φ0 − φ(−X,−Z). (26)
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Figure 17. Variation of the shape of the temperature distribution around the cylinder at x = 100,
200 and 300 mm. The overall Rayleigh and Hartmann numbers are, respectively, 27× 103 and 26.6.

Recall that T0 and φ0 denote temperature and electric potential at the centre point
of the cell (x = 200 mm, r = 0 mm). Although detailed results are not reproduced
in the following sections, this confirmation includes checks on potential differences
measured by the movable probe at various radii and angular settings.

5.1. Temperature measurements

Figure 17 shows the distribution of temperature around the cylindrical wall at the
central transverse plane and at the planes halfway between the centre and the ends
of the cell, namely, x = 200, 100 and 300 mm from the cold end. That the symmetric
form (about α = 180◦) of the temperature distribution around the central circle has
been significantly distorted at the other two circles is clearly apparent.

Reference was made in § 2.3 to the first-order solution in RaG/Ha2 near the endwalls
of the cell (Cowley 1995) adjusting to the fully developed condition over a length
of the order of the cell radius r0. Since the latter is 20 mm, it would appear that
the actual length of the adjustment zone is significantly greater than r0 under the
conditions of the figure 17 measurements. Furthermore, the first-order solution is
such that a sinusoidal distribution of temperature with α is maintained throughout
the core, with only amplitude diminishing as the endwalls are approached.

However, it is not surprising that not even qualitative agreement with the first-order
solution is being obtained since for the Hartmann number 26.6 and overall Rayleigh
number 27 × 103, the ratios G/G0 and RaG/Ha2 are, respectively, 0.45 and 17.2. We
suggest that the results are beginning to show evidence of transition to a regime with
a thermal boundary layer on the cylindrical wall of the cell, although RaG/Ha2 is
not large enough for a strictly thin layer if that is the controlling parameter. Three
observed features are worthy of note. The first is that the temperature distribution
becomes flatter in the direction of flow, i.e. from the hot end to the cold end at
α = 90◦ and from the cold end to the hot end at α = 270◦. The second is that
the temperature field is approaching a condition of horizontal stratification, i.e. the
temperature difference over an axial length of 200 mm at α = 90◦ is 3.2 K, while
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Figure 18. (a) The temperature distribution around the cell near the cold end (x = 30 mm) at low
values of RaG/Ha2 (overall Rayleigh number of 22.6 × 103). (b) Asymmetry of the temperature
extrema.

the temperature difference over the vertical diameter of 40 mm is 4.7 K. The third
point is that the case is one of substantial temperature steps near the endwalls since
G/G0 = 0.45 (see also figure 11). Mention was made in § 2.3 of thermal effects being
likely to modify the endwall MHD layer when Ra/Ha2 is of the order of Pr−1, a
criterion which is satisfied. An interesting feature is the slight reversal of the departure
from symmetry as conditions settle down at high Hartmann number to a core-driven
and subsequently conduction-dominated regime, as illustrated by figure 18(b), when
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temperature distributions around the circle at x = 30 mm from the cold endwall
(less than one diameter) are plotted (figure 18a). As the Hartmann number is further
increased, it was found experimentally that, for given overall Rayleigh number Ra,
the vertical temperature distribution becomes more symmetrical about the horizontal
XY mid-plane over a longer length.

5.2. Investigation of the end flow from electric potential measurements

Results of the measurement of electric-potential difference between α = 45◦ and
α = 135◦ along the length of the cell are plotted against longitudinal position x on
figure 19. Recall (see § 4.3) that this measurement is equal to u0B0r0, where u0 is the
scale velocity, in a fully developed region at high Hartmann number, but note also
the extremely low-level voltage signal which is being recorded here.

An important feature of the potential measurements is that there is no evidence of
there being any region where the level increases markedly, i.e. by a factor of the order
of the Hartmann number. The situation does appear to be one where the Hartmann
layers are inactive everywhere.

The measured potential differences are effectively constant over the majority of the
length of the cell for given Hartmann number and within experimental accuracy; this
is true even for a moderate level of Ha (Ha = 64). This supports the idea of a fully
developed flow in the core region. Thus there is no information to be gained from
this part of the curves on the approach to a core-driven regime.

What is of interest is the complex behaviour near the endwalls. There is evidence
of substantial departures from symmetry about the horizontal mid-plane XY even at
quite high Hartmann numbers. Recall that because of centro-symmetry, the potential
difference φ(225◦) − φ(315◦) at the hot end (x = 400 mm) may be deduced from
measurement shown at the cold end (x = 0 mm) by means of equation (26), a point
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which was also experimentally checked. What is clear from figure 19 is that there
are substantial voltage gradients near the endwalls. When the regime is conduction
dominated or core driven, the subsequent Y -component of the balance between the
curls of the electromagnetic and buoyancy forces (equation (8)) is consistent with the
observation of both an extremum on the electric-potential measurement near the cold
endwall and the break-up of horizontal XY symmetry for the temperature distribution
around circles located in the vicinity of the cold wall. This behaviour has already
been made evident by the numerical calculations of Davoust et al. (1997). Further
details of this lack of symmetry at even quite high values of Hartmann number are
provided by the results plotted on figure 20 for very small distances from the cold
endwall. What is represented is the departure in temperature from that of a uniform
gradient G which applies in the core. At α = 45◦, the gradient of this departure
is consistent with an augmentation of heat transfer rate by conduction at the wall
(providing additional flux to cope with the convection in the core), but at α = −45◦,
the heat transfer rate by conduction is decreased. It is possible to show from a scaling
analysis based on the aforementioned balance how these temperature departures are
able to drive additional voltage gradients in the Y -direction. Continuity of the electric
current implies axial voltage gradients also in the end re-circulating flow since the
Hartmann layer is observed to be passive.

6. Conclusion
The internal MHD thermogravitational flow studied in this paper is stabilized as

soon as a Hartmann number of the order of 10 is reached (Davoust et al. 1995).
This efficient suppression of turbulence is related to the crucial fact that, under
the geometrical conditions of the flow, the Hartmann layer which develops along
the longitudinal wall of the cylindrical enclosure remains electrically inactive. This
hypothesis of the asymptotic analysis is confirmed by our experimental measurements.
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It follows that electric-current paths are closed mainly within the core and not via
the Hartmann layer. It is therefore not surprising that the two-dimensional analytical
prediction of the MHD buoyancy-driven flow within the vertical longitudinal XZ
mid-plane (Garandet et al. 1992) is close to our three-dimensional calculations both
qualitatively and in order of magnitude. When the magnetic field magnitude is
significantly large (Ha ∼ 100), the MHD reorganization of the laminar flow stems
from the need to balance the curl of the buoyancy force with the curl of the magnetic
force. The horizontal components of this balance are thus responsible for:

a Hadley loop within vertical longitudinal XZ-planes (Y -component of the
balance);

three-dimensional recirculating loops within cross-sections (X-component).
We have been able to present some experimental evidence on the nature of the

transition from conduction-dominated to core-driven and then to boundary-layer-
driven regimes as RaG/Ha2 is increased. For conduction domination, the temperature
field is even about the XY mid-plane, the axial velocity odd and other components of
velocity even. With convection of temperature becoming noticeable, the perturbation
to the temperature field is odd about the XY mid-plane, and transverse components
of velocity even. However, as RaG/Ha2 increases further, these symmetry concepts
begin to lose value, as has been indicated by the measurements of temperature
distribution illustrated in figure 18(a), the differences in electric potential illustrated in
figure 19 and the axial temperature gradients of figure 20. The evidence is consistent
with a strengthening thermal influence of the boundary layers on the hot and cold
endwalls and a process of development in the axial direction. Of particular note are
the electric-potential extrema in figure 19 in the upper half of the cell near the cold
end (and correspondingly in the lower half near the hot end). These extrema were
also observed in the computational work of Davoust et al. (1997), where they were
associated with re-circulating loops at each end in addition to the main Hadley loop.
These additional loops also carry a weak transverse component of vorticity ŷ ·(∇×U ),
of the same sign as that of the Hadley loop.

In agreement with theory, asymptotic laws for the fully developed MHD core flow
have been experimentally validated for velocity and convective heat transfer rates:
u0 = ρgβ∆T/(σB2

0); the convective part of Nu scales as (πr2
0λ∆T/L) (Ra2

G/Ha4).
Little mention has been made in this paper of inertia effects. However, for any

detailed treatment of the endwall layers and departure from the fully developed flow
condition in the core, inertia effects will become important at moderate Hartmann
numbers, the criterion being the value of Gr1/2/Ha2 (Lykoudis 1961).

Finally, it is worth noting that local measurements have been taken by new dual-
purpose sensors specially designed to remove unwelcome thermoelectric contributions
to potentials. Their technology and the associated measurement strategy have been
presented in this paper.

The authors are indebted to CNES for the financial support of the experimental
part of this program. The authors wish to thank Dr T. Alboussière and Dr J. P.
Garandet for their helpful assistance and encouragement. They are also grateful to
Dr H. Ben Hadid and D. Henry for their collaboration.

Appendix. The fully developed secondary flow for RaG/Ha2 →∞
In this Appendix we outline the model and solution which lead to equation (18) for

the wall temperature distribution in a region of fully developed flow as RaG/Ha2 →∞.
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It turns out that the inverse of this parameter is the thickness of a thermal boundary
layer which we require to be thin, while still being much thicker than the Hartmann
layer. Conditions for the model are therefore Ha3 � RaG � Ha2. The equations
governing the temperature associated with the transverse flow and governing the flow
itself are (13) and (14), which are repeated here for convenience:

∂2Θs

∂Y 2
+
∂2Θs

∂Z2
=
RaG

Ha2

(
−2Z +Usy

∂Θs

∂Y
+Usz

∂Θs

∂Z

)
, (A 1)

∂2Ψs

∂Z2
=
∂Θs

∂Y
, (A 2)

where the term −2Z in the parentheses on the right-hand side of equation (A 1) is the
contribution of the primary flow to convection, which is unaffected by the secondary
flow. The balancing of the curl of the buoyancy force and the curl of the Lorentz force
(equation (A 2)) can be expressed, for the latter force, directly in terms of the stream
function Ψs because no longitudinal component of the electric field is associated with
the secondary flow.

The starting point for the model is the observation that the four-vortex structure,
found for the flow when RaG/Ha2 is small, will tend to advect the temperature in
such a way as to flatten the isotherms. If they become horizontal, the buoyancy force
loses its curl. However the adiabatic boundary condition demands that the isotherms
be normal to the wall and it is supposed that the necessary adjustment to their slope
occurs in a thin, but inviscid, thermal layer, viscous effects being confined to an even
thinner Hartmann layer. The thermal layer is of the same type as ones investigated in
a study of buoyancy-driven flow in tilted containers (Cowley 1996). The temperature
field is expressed as

Θs = Θc +Θb,

where Θc is the core temperature, taken to be a function of Z only (horizontal
isotherms), while Θb is the departure from that temperature in the thermal boundary
layer. If thermal conduction in the core associated with the vertical variation of Θc is
comparable with convection by the primary flow, equation (A 1) shows that Θc is of
order RaG/Ha2. Consistent with this magnitude are Θb = O(1), Ψs = O

(
Ha2/RaG

)
and ∂/∂n = O(RaG/Ha2) where n is the inward normal at the wall. Noting that in
the thermal layer the influence of the primary flow and of Θb may be neglected on
the right-hand side of equation (A 1) and that Θc cannot contribute to the right-hand
side of (A 2), we obtain to leading order in the layer

∂2Θb

∂n2
=
RaG

Ha2

(
∂Ψs

∂n
cos α

)
dΘc

dZ
, (A 3)

∂2Ψs

∂n2
sin2 α =

∂Θb

∂n
cos α, (A 4)

where α is the angle of the radius vector to the horizontal, as in figure 2. The boundary
conditions on Θb and Ψs are

∂Θb

∂n
=

dΘc

dZ
sin α at n = 0 (adiabatic wall), (A 5a)

Ψs = 0 at n = 0, (A 5b)

Θb → 0 as n→∞, (A 5c)
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accommodation to the no-slip condition being accomplished by the thinner Hartmann
layer. The solution for Ψs is

Ψs = −Ha2

RaG

(
1− e−kn

)
tan α, where k2 =

RaG

Ha2

dΘc

dZ
cot2 α. (A 6a,b)

The information to be carried over to the core solution is the value of Ψs as n→ ∞,
which we denote by

Ψo = − (Ha2/RaG
)

tan α. (A 7)

The result (A 7) has two interesting features. The first is that the stream function in
dimensional terms has no dependence on the level of the magnetic field:

ψo = −αd tan α,

where αd is the thermal diffusivity. The second is that the result may be derived from
conservation of overall heat fluxes to a small element of the layer, but the present
derivation via the layer solution (A 6a, b) is given here in order to reveal the structure
of the layer.

Returning to the core, equations (A 1) and (A 2) imply that Usz is constant on each
horizontal isotherm and balancing the net core flow across each plane Z = const.
with the return flow in the thermal layer we obtain

Usz cos α = −Ψo =
(
Ha2/RaG

)
tan α,

from which it follows that the convection term associated with Usz is of the same
order as the contribution from the primary flow. Since tan α = Z/

√
1− Z2, the core

temperature equation to leading order is finally found to be

d2Θc

dZ2
− Z

1− Z2

dΘc

dZ
= −2

(
RaG

Ha2

)
Z. (A 8)

Integrating equation (A 8) once yields

dΘc

dZ
=

2

3

RaG

Ha2
(1− Z2) +

C√
1− Z2

, (A 9)

where C is a constant of integration. Since the wall of the cylinder is adiabatic and
vertical velocity on the plane Z = 0 is zero, the net rate of change of longitudinal
enthalpy flux with X in the upper half of the cylinder must be balanced by heat
conduction across Z = 0, i.e.

RaG

Ha2

∫ 1

0

UX(1− Z2)1/2 dZ = − dΘc

dZ

∣∣∣∣
Z = 0

,

using the fact that the longitudinal temperature gradient is unity in the non-
dimensional variables and neglecting any small influence of the thermal layer on
the net heat conduction. With UX = −2Z (equation (12)), the condition yields
dΘc/dZ = 2

3
(RaG/Ha2) at Z = 0 and the constant C in (A 9) must therefore be zero.

Noting that Θc is odd in Z , integration of (A 9) gives

Θc = 2
9
(RaG/Ha

2)Z(3− Z 2), (A 10)

and to leading order in the thermal layer

Θs = Θc. (A 11)
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Elimination of Θc between (A 10) and (A 11) leads to the form given as equation (18)
of § 2.2.
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